Cari Materi

Humor Statistik: Otak Koruptor

Alkisah, dirancang suatu penelitian tentang perilaku korupsi di Indonesia, terkait dengan perilaku dan kecerdasan otak dari para koruptor. Teori telah disusun dengan baik, dan tibalah saatnya pengambilan data primer oleh para statistikawan. Alih-alih, mereka kesulitan untuk mencari data tentang kecerdasan otak dari para koruptor. Mengapa? Karena ternyata para koruptor itu TIDAK PUNYA OTAK!!!

Humor Statistik: Probabilitas Cerai

Suatu saat, seorang wanita pakar statistik pulang ke rumah dan mendapati suaminya sedang berdua dengan wanita lain di tempat tidur.

"Astaga! Tak kusangka Kau berbuat seperti ini", katanya kepada suaminya, "99% istri pasti akan meminta cerai melihat hal ini!"
"Tunggu dulu istriku", sahut suaminya yang juga pakar statistik, "Dengarkan dulu penjelasanku!"
"Wanita itu kudapati terkapar di jalan, sendirian dalam kondisi yang menyedihkan. Aku kasihan, lalu aku bahwa pulang. Aku rawat dia. Aku berikan pakaian yang kemungkinannya hanya 5% kamu pakai. Juga sepatu yang hanya 5% kemungkinannya kamu pakai. Ku beri dia makanan yang tingkat kesukaanmu hanya 5%"

Si suami terus menjelaskan bahwa apa yang dia berikan adalah segala sesuatu yang tidak signifikan, karena kurang dari 5% dipergunakan oleh istrinya.
"Oke!" cetus istrinya, "Lalu?"
"Ya begitulah", sambung suaminya, "Ketika aku antar wanita itu sampai ke pintu keluar, dia bertanya lagi kepadaku, apa lagi yang kemungkinan dipergunakan oleh istrimu di bawah 5%?"


Autokorelasi


Uji Autokorelasi merupakan salah satu uji asumsi klasik dalam analisis regresi linear berganda. Uji autokorelasi adalah untuk melihat apakah terjadi korelasi antara suatu periode t dengan periode sebelumnya (t -1). Secara sederhana adalah bahwa analisis regresi adalah untuk melihat pengaruh antara variabel bebas terhadap variabel terikat, jadi tidak boleh ada korelasi antara observasi dengan data observasi sebelumnya. Sebagai contoh adalah pengaruh antara tingkat inflasi bulanan terhadap nilai tukar rupiah terhadap dollar. Data tingkat inflasi pada bulan tertentu, katakanlah bulan Februari, akan dipengaruhi oleh tingkat inflasi bulan Januari. Berarti terdapat gangguan autokorelasi pada model tersebut. Contoh lain, pengeluaran rutin dalam suatu rumah tangga. Ketika pada bulan Januari suatu keluarga mengeluarkan belanja bulanan yang relatif tinggi, maka tanpa ada pengaruh dari apapun, pengeluaran pada bulan Februari akan rendah.

Uji autokorelasi hanya dilakukan pada data time series (runtut waktu) dan tidak perlu dilakukan pada data pada kuesioner di mana pengukuran semua variabel dilakukan secara serempak pada saat yang bersamaan. Model regresi pada penelitian di Bursa Efek Indonesia di mana periodenya lebih dari satu tahun biasanya memerlukan uji autokorelasi.

Beberapa uji statistik yang sering dipergunakan adalah uji Durbin-Watson atau uji dengan Run Test dan jika data observasi di atas 100 data sebaiknya menggunakan uji Lagrange Multiplier. Beberapa cara untuk menanggulangi masalah autokorelasi adalah dengan mentransformasikan data atau bisa juga dengan mengubah model regresi ke dalam bentuk persamaan beda umum (generalized difference equation). Selain itu juga dapat dilakukan dengan memasukkan variabel lag dari variabel terikatnya menjadi salah satu variabel bebas, sehingga data observasi menjadi berkurang 1.

Humor Statistik: Anda Bukan Statistikawan

Suatu saat, seorang eksekutif yang mempunyai ratusan perusahaan datang kepada seorang ahli statistik dengan membawa setumpuk data untuk dianalisis dan mengambil keputusan. Si ahli statistik menerima tumpukan kertas tersebut, masuk ke dalam suatu ruangan, lalu keluar sambil membawah hasil. Eksekutif tersebut terheran-heran dan bertanya.
"Bagaimana Anda bisa melakukan hal tersebut?"
"Maaf, kami tidak bisa memberitahukannya, karena Anda bukan seorang statistikawan!" jawabnya.

Beberapa lama kemudian, eksekutif datang lagi dengan permasalahan yang sama dan mendapatkan jawaban yang tepat untuk keputusannya. Karena penasaran, dia bertanya bagaimana melakukan hal tersebut, dan mendapatkan jawaban yang sama pula, yaitu bahwa dirinya bukan seorang statistikawan.

Akhirnya eksekutif tersebut bertanya bagaimana caranya menjadi seorang statistikawan. Dia mendapatkan jawaban,
"Statistik bekerja dengan angka-angka yang banyak, jadi sebelum menjadi statistikawan hitunglah rumput di halaman itu dan sampaikan hasilnya kepada saya".

Karena saking penasarannya, sang eksekutif menghitung jumlah rumput di halaman sampai berbulan-bulan sehingga akhirnya mendapatkan angka yang tepat seperti yang diharapkan oleh statistikawan tersebut.
"Baiklah, Anda telah berhasil melewati ujian, sekarang silahkan masuk ruangan saya untuk melihat bagaimana caranya kami melakukan analisi!"

Statistikawan mengajak eksekutif masuk ke ruangan, dan...ternyata ruangan itu benar-benar membuat eksekutif terheran-heran dan takjub luar biasa.
Namun, maaf, ceritanya sampai di sini saja, karena Anda BUKAN STATISTIKAWAN!!!!

Humor Statistik yang lain: Tiga Sifat Statistikawan

Humor Statistik: Tiga Sifat Statistikawan

Konon hanya ada tiga sifat yang dipunyai oleh seorang statistikawan. Malangnya, setiap statistikawan hanya dapat memiliki dua dari sifat tersebut. Tiga sifat tersebut adalah cerdas, jujur dan taat pada penguasa.

Jika seorang statistikawan jujur dan taat pada penguasa, biasanya tidak cerdas.
Jika seorang statistikawan jujur dan cerdas, biasanya tidak taat penguasa.
Dan jika seorang statistikawan cerdas dan taat pada penguasa, biasanya tidak jujur

Humor statistik yang lain:  Surga dan Statistikawan



Humor Statistik: Surga dan Statistikawan

Alkisah, Sang Penjaga Surga sudah mulai lelah dan letih dalam meneliti dan menentukan siapa yang harus masuk surga dan siapa yang masuk neraka. Beberapa penghuni surga yang prihatin dengan hal tersebut menyarankan untuk menggunakan teknik-teknik statistik untuk memudahkan pekerjaan, mengingat penduduk dunia yang sudah mencapai milyaran.

Sang Penjaga surga setuju dengan usulan itu dan berniat menggunakan teknik statistik untuk memudahkan pekerjaannya. Akan tetapi, hari demi hari, bulan demi bulan, niat itu tidak terlaksana juga.

Alih-alih, rupanya Sang Penjaga surga tidak menemukan adanya ahli statistik yang menghuni surga!!!

Basic Econometrics by Damodar Gujarati

Banyak sekali referensi statistik yang ada, meskipun ada yang bagus dan juga (maaf) ada yang kurang bagus. Di sini kami menggunakan salah satu dari yang bagus yaitu Basic Econometrics yang ditulis oleh Damodar Gujarati. Dalam buku ini hampir semua topik statistik dibahas secara rinci sehingga menuntun pembacanya untuk memahami dan mengaplikasikannya dengan baik. Buku tersebut juga dilengkapi dengan CD sehingga memudahkan pembacanya.

Ketika pertama kalinya dipublikasikan pada Tahun 1978, buku ini menjadi acuan utama bagi para pemerhati statistik, khususnya statistik dasar hingga menengah. Jika Anda menjumpai perbedaan pengertian tentang statistik, misalnya tentang uji normalitas pada residual atau pada masing-masing variabel, penanggulangan berbagai masalah uji asumsi klasik, atau permasalahan yang lain, semua ada di sini secara lengkap dan terperinci.
Bahkan dalam buku ini juga dilengkapi dengan Apendix, yang berisi konsep-konsep dasar matematika yang diadopsi dalam statiatik, misalnya teori central limit dan berbagai teori mendasar yang lain.


Humor Statistik: Usia Statistik

Seorang anak berumur 7 tahun bertemu dengan anak lain yang keduanya merupakan anak dari pakar statistik.

"Berapa umurmu?" tanyanya
"Aku tidak tahu", jawab temannya.
"Baiklah, aku akan mencoba menebak berapa usiamu. Pernahkah kamu menyesali pekerjaan ayahmu?"
"Belum pernah. Memang mengapa?"
"Kalalu begitu, umurmu pasti 6 tahun!!!"

Variabel Penelitian

Secara singkat, variabel adalah gejala yang menjadi fokus peneliti untuk diamati. Tentunya banyak pengertian lain, dan silahkan Anda mencari definisi tentang variabel di sumber lain. Di sini akan diuraikan berbagai jenis variabel yang sering dijumpai dalam suatu penelitian. Penelitian anda, paling hanya memuat satu, dua, atau paling tiga dari jenis variabel di bawah
1. Variabel independen
Variabel independen adalah variabel yang menjadi sebab atau berubahnya suatu variabel lain (variabel dependen). Juga sering disebut dengan variabel bebas, prediktor, stimulus, eksougen atau antecendent.

2. Variabel dependen
Variabel dependen merupakan variabel yang dipengaruhi atau menjadi akibat karena adanya variabel lain (variabel bebas). Juga sering disebut variabel terikat, variabel respons atau endogen. Variabel inilah yang biasanya dikupas dalam-dalam pada latar belakang penelitian. Biasanya diberikan porsi yang lebih dalam membahas variabel terikat dari pada variabel bebasnya karena merupakan implikasi dari hasil penelitian.

3. Variabel Moderating
Variabel moderating adalah variabel yang memperkuat atau memperlemah hubungan antara variabel bebas dengan variabel terikat. Sekali lagi, memperkuat atau memperlemah. Variabel moderating juga sering disebut sebagai variabel bebas kedua dan sering dipergunakan dalam analisis regresi linear, atau pada structural equation modeling. Sebagai contoh, hubungan ayah dan ibu akan semakin mesra dengan adanya anak. Jadi anak merupakan variabel moderating antara ayah dan ibu. Atau, selingkuhan merenggangkan hubungan ayah dan ibu, jadi selingkuhan merupakan variabel moderating antara ayah dan ibu.

4. Variabel intervening
Adalah variabel yang menjadi media pada suatu hubungan antara variabel bebas dengan variabel terikat. Sebagai contoh, cinta ibu terhadap ayah akan semakin kuat setelah berkeluarga. Jadi keluarga merupakan media bagi ibu dalam pengaruhnya terhadap ayah. Banyak contoh tentang regresi linear dengan variabel intervening.

5. Variabel kontrol
Variabel kontrol adalah variabel yang dikendalikan atau dibuat konstan, atau dijadikan acuan bagi variabel yang lain. Misalnya variabel kecepatan menulis murid-murid suatu sekolah, yang diukur dan dibandingkan kecepatan menulis murid sekolah lain. Bisa juga digunakan dalam analisis regresi linear dengan variabel kontrol.

Sebenarnya ada lagi istilah yang lain yaitu variabel dinamis. Semua jenis variabel di atas merupakan variabel statis, yang berarti tidak berubah selama proses penelitian berlangsung. Variabel dinamis biasanya dipergunakan dalam penelitian kualitatif sehingga tidak akan terlalu banyak dibahas di sini.

Humor Statistik: Statistik Keselamatan

Seorang mahasiswa jurusan statistik pemalas, sedang nongkrong di sebuah jembatan penyeberangan jalan di dekat kampusnya. Dosen walinya yang melihat itu menegur dan berkata:

"Saudara telah ketinggalan mata kuliah banyak sekali, eh.. kok malah nongkrong di sini?"
"Ini saya sedang menerapkan ilmu statistik Pak", sahut mahasiswa membela diri. Lalu melanjutkan perkatannya,"Orang yang melewati jembatan ini, meskipun hanya 2 menit, secara statistik lebih aman dibandingkan yang tidak melewatinya. Ini saya bahkan sekitar 2 jam, jadi tentunya lebih aman!"

Humor Statistik: ANOVA

Suatu saat, seorang statistikawan junior bertanya kepada rekannya yang sudah lebih berpengalaman dalam hal statistik tentang cara mencari perbedaan rata-rata dari beberapa kelompok.

"Kamu dapat menggunakan Uji ANOVA", jawab rekannya.
"Lho tapikan ANOVA menguji varians, sedangkan yang saya cari adalah perbedaan rata-rata?" tanya si junior.
"Memang betul, tapi dengan mengetahui perbedaan varians terbesar dan terkecil kita dapat memberikan adjustment tentang perbedaan rata-rata yang kamu cari tersebut!"
"Wah, rupanya anda belum paham permasalahan saya", sahut si junior yang membuat rekannya naik pitam.
"Baiklah", sergah sang senior, "Silahkan cari saja perbedaan rata-ratanya. Lalu tempelkan perbedaan rata-rata itu di jidatmu!"

(Rata-ratanya tentulah berbeda, akan tetapi apakah perbedaan itu signifikan secara statistik atau tidak, itu yang menjadi permasalahan)


Simulasi Regresi Linear Berganda 01

A.  Deskripsi Objek Penelitian
Penelitian menggunakan periode 2007 sampai dengan 2009 sehingga perusahaan yang digunakan adalah perusahaan perbankan yang telah aktif diperdagangkan dalam periode tersebut. Terdapat 28 perusahaan perbankan yang terdaftar di Bursa Efek Indonesia pada tahun 2009, akan tetapi terdapat 3 perusahaan yang baru listing pada tahun 2007, yaitu PT Bank Agroniaga Tbk., PT Bank Capital Indonesia Tbk., dan PT Bank Windu Kentjana International Tbk. Demikian juga terdapat 2 buah perusahaan yang baru listing di BEI tahun 2008 yaitu PT Bank Ekonomi Raharja Tbk., dan PT Bank Tabungan Pensiunan Nasional Tbk., sehingga hanya terdapat 23 perusahaan perbankan yang berturut-turut memperdagangkan sahamnya dari tahun 2007 sampai dengan tahun 2009. Dari 23 perusahaan yang memperdagangkan sahamnya berturut-turut antara tahun 2007 sampai dengan 2009 terdapat 8 perusahaan yang tidak mencantumkan data variabel penelitian secara lengkap yaitu data piutang perusahaan yang dipergunakan untuk menghitung discretionary accrual. Dengan demikian sampel penelitian adalah sebanyak 15 perusahaan.

B. Analisis Data
1. Uji Asumsi Klasik

Analisis regresi linear berganda memerlukan beberapa asumsi agar model tersebut layak dipergunakan. Asumsi yang dipergunakan dalam penelitian ini adalah uji normalitas, uji multikolinearitas, uji heteroskedastisitas dan uji autokorelasi.
a.  Uji Normalitas
Uji normalitas data dipergunakan untuk menentukan apakah data terdistribusi secara normal atau tidak. Uji normalitas yang dipergunakan adalah plot grafik di mana asumsi normalitas terpenuhi jika titik-titik pada grafik mendekati sumbu diagonalnya.
Gambar 1
Uji Normalitas
Gambar menunjukkan bahwa titik-titik pada grafik telah mendekati atau hampir berhimpit dengan sumbu diagonal atau membentuk sudut 45 derajad dengan garis mendatar. Interpretasinya adalah bahwa nilai residual pada model penelitian telah terdistribusi secara normal. Untuk memperkuat hasil pengujian tersebut dipergunakan uji Kolmogorov-Smirnov yaitu sebagai berikut:
Tabel 1
Uji Normalitas dengan Kolmogorov-Smirnov
Tampak bahwa nilai signifikansi adalah sebesar 0,868 > 0,05 yang menunjukkan bahwa nilai residual telah terdistribusi secara normal. Hasil analisis awal menunjukkan adanya data outliers yaitu data yang menyimpang terlalu jauh dari data yang lain sehingga harus dikeluarkan dari model penelitian. Berikut adalah identifikasi data outlier pada model dalam penelitian ini:
Tabel 2
Identifikasi Data Outliers
Tampak bahwa terdapat 1 buah data outliers yaitu data ke-8 sehingga data tersebut dikeluarkan dari model penelitian dan jumlah data penelitian menjadi 44 buah. Dengan mengeluarkan satu buah data tersebut, masih terdapat 1 buah lagi data outliers yaitu sebagai berikut:
Tabel 3
Identifikasi Data Outliers 2
Data ke-23 menjadi outliers setelah data ke-8 dikeluarkan, dengan demikian, data ke-23 juga dikeluarkan dari model sehingga tidak ada lagi data outliers. Dengan mengeluarkan dua buah data outliers maka diperoleh grafik P Plot sebagai berikut:
Gambar 2
Uji Normalitas Tanpa Data Outliers
Gambar menunjukkan bahwa titik-titik pada grafik telah mendekati atau hampir berhimpit dengan sumbu diagonal atau membentuk sudut 45 derajad dengan garis mendatar. Interpretasinya adalah bahwa nilai residual pada model penelitian telah terdistribusi secara normal. Untuk memperkuat hasil pengujian tersebut dipergunakan uji Kolmogorov-Smirnov yaitu sebagai berikut:
Tabel 4
Uji Normalitas dengan Kolmogorov-Smirnov Tanpa Outliers
Tampak bahwa dengan 43 data maka nilai signifikansi adalah sebesar 0,884 > 0,05 yang menunjukkan bahwa nilai residual telah terdistribusi secara normal.

b. Uji Multikolinearitas
Uji multikolinearitas dilakukan dengan menggunakan nilai variance inflation factor (VIF). Model dinyatakan terbebas dari gangguan multikolinearitas jika mempunyai nilai VIF di bawah 10 atau tolerance di atas 0,1. Berikut adalah uji Multikolinearitas dalam penelitian ini:
Tabel 5
Uji Multikolinearitas
Tabel di atas memberikan semua nilai VIF di bawah 10 atau nilai tolerance di atas 0,1. Berarti tidak terdapat gejala multikolinearitas pada model dalam penelitian ini.

c. Uji Heteroskedastisitas
Uji Heteroskedastisitas dilakukan dengan memplotkan grafik antara SRESID dengan ZPRED di mana gangguan heteroskedastisitas akan tampak dengan adanya pola tertentu pada grafik. Berikut adalah uji heteroskedastisitas pada keempat model dalam penelitian ini:
Gambar 3
Uji Heteroskedastisitas

Tampak pada diagram di atas bahwa model penelitian tidak mempunyai gangguan heteroskedastisitas karena tidak ada pola tertentu pada grafik. Titik-titik pada grafik relatif menyebar baik di atas sumbu nol maupun di bawah sumbu nol.

d. Uji Autokorelasi
Berikut adalah nilai Durbin-Watson pada model dalam penelitian ini:
Tabel 6
Uji Autokorelasi
Adapun nilai dU untuk 5 buah variabel dengan 43 data pada taraf 5% adalah sebesar 1,780. Tampak bahwa 0 < dW < dU yang masuk pada kategori no decision. Untuk memperkuat hasil tersebut digunakan uji Run, di mana gangguan autokorelasi terjadi jika signifikansi di bawah 0,05. Berikut adalah uji autokorelasi dengan Run test:
Tabel 7
Uji Autokorelasi dengan Run Test
Tampak bahwa signifikansi adalah sebesar 0,760 > 0,05 yang menunjukkan bahwa tidak terjadi gangguan autokorelasi pada model penelitian.

C. Uji Goodness of Fit
Uji goodness of fit adalah untuk melihat kesesuaian model, atau seberapa besar kemampuan variabel bebas dalam menjelaskan varians variabel terikatnya. Berikut adalah hasil perhitungan nilai R dan koefisien determinasi dalam penelitian ini:
Tabel 8
Uji Goodness of Fit
Tabel tersebut memberikan nilai R sebesar 0,689 pada model penelitian dan koefisien determinasi sebesar 0,404. Tampak bahwa kemampuan variabel bebas dalam menjelaskan varians variabel terikat adalah sebesar 40,4%. Masih terdapat 59,6% varians variabel terikat yang belum mampu dijelaskan oleh variabel bebas dalam model penelitian ini.

D. Uji F
Uji F (uji simultan) adalah untuk melihat pengaruh variabel bebas yaitu terhadap variabel terikatnya yaitu DA secara serempak. Berikut adalah nilai F hitung dalam penelitian ini:
Tabel 9
Uji F
Tampak bahwa nilai F hitung pada model penelitian adalah sebesar 6,686 dengan taraf signifikansi sebesar 0,000. Nilai signifikansi adalah di bawah 0,05 yang menunjukkan bahwa variabel bebas secara serempak mempunyai pengaruh yang signifikan terhadap manajemen laba pada signifikansi 5%.

E.  Uji t
Uji t (parsial) adalah untuk melihat pengaruh variabel-variabel bebas secara parsial terhadap variabel terikatnya. Berikut adalah hasil perhitungan nilai t hitung dan taraf signifikansinya dalam penelitian ini:
Tabel 10
Uji t
Berdasarkan hasil pada tabel tersebut, dapat disusun persamaan regresi linear berganda sebagai berikut:
Y = 3,385 – 0,108 X1 – 0,016 X2 + 0,11 X3 + 0,178 X4 - 0,161 X5 + e
Keterangan:
Y      = Discretionary Accrual
X1    = Ukuran dewan komisaris
X2    = Komite audit
X3    = Kepemilikan institusional
X4    = Kepemilikan manajerial
X5    = Ukuran perusahaan
Interpretasi terhadap persamaan tersebut beserta uji hipotesis akan diberikan sebagai berikut:
1. Pengujian Hipotesis 1
Berdasarkan analisis data di atas, maka tampak bahwa nilai t hitung untuk variabel ukuran dewan komisaris adalah sebesar -3,011. Nilai tersebut di atas nilai t tabel untuk N = 43 yaitu sebesar + 2,011 sehingga diinterpretasikan bahwa variabel ukuran dewan komisaris mempunyai pengaruh yang signifikan terhadap discretionary accrual. Dengan demikian hipotesis H1 dalam penelitian ini yang berbunyi: Terdapat pengaruh yang signifikan antara ukuran dewan komisaris terhadap manajemen laba diterima. Berarti ukuran dewan komisaris mempunyai pengaruh signifikan terhadap manajemen laba.

2.  Pengujian Hipotesis 2
Berdasarkan analisis data di atas, maka tampak bahwa nilai t hitung untuk variabel ukuran komite audit adalah sebesar -0,392. Nilai tersebut di bawah nilai t tabel + 2,011 sehingga diinterpretasikan bahwa variabel ukuran komite audit tidak mempunyai pengaruh yang signifikan terhadap discretionary accrual. Dengan demikian hipotesis H2 dalam penelitian ini yang berbunyi: Terdapat pengaruh yang signifikan antara komite audit terhadap manajemen laba ditolak. Berarti ukuran komite audit tidak mempunyai pengaruh signifikan terhadap manajemen laba.

3.   Pengujian Hipotesis 3
Berdasarkan analisis data di atas, maka tampak bahwa nilai t hitung untuk variabel ukuran kepemilikan institusional adalah sebesar 3,093. Nilai tersebut di atas nilai t tabel + 2,011 sehingga diinterpretasikan bahwa variabel kepemilikan institusional mempunyai pengaruh yang signifikan terhadap discretionary accrual. Dengan demikian hipotesis H3 dalam penelitian ini yang berbunyi: Terdapat pengaruh yang signifikan antara kepemilikan intitusional terhadap manajemen laba diterima. Berarti kepemilikan institusional mempunyai pengaruh signifikan terhadap manajemen laba.

4.  Pengujian Hipotesis 4
Berdasarkan analisis data di atas, maka tampak bahwa nilai t hitung untuk variabel kepemilikan manajerial adalah sebesar 1,083. Nilai tersebut di bawah nilai t tabel + 2,011 sehingga diinterpretasikan bahwa variabel kepemilikan manajerial tidak mempunyai pengaruh yang signifikan terhadap discretionary accrual. Dengan demikian hipotesis H4 dalam penelitian ini yang berbunyi: Terdapat pengaruh yang signifikan antara kepemilikan manajerial terhadap manajemen laba ditolak.

5.    Pengujian Hipotesis 5
Berdasarkan analisis data di atas, maka tampak bahwa nilai t hitung untuk variabel ukuran perusahaan adalah sebesar -3,663. Nilai tersebut di atas nilai t tabel + 2,011 sehingga diinterpretasikan bahwa variabel ukuran perusahaan mempunyai pengaruh yang signifikan terhadap discretionary accrual.. Dengan demikian hipotesis H4 dalam penelitian ini yang berbunyi: Terdapat pengaruh yang signifikan antara ukuran perusahaan terhadap manajemen laba diterima. Berarti terdapat pengaruh yang signifikan antara ukuran perusahaan terhadap manajemen laba.

Humor Statistik: Sampel Belum Cukup

Suatu saat di republik tercinta terjadi kasus meninggalnya rakyat jelata karena menderita kelaparan. Spontan terjadi kekacauan di media massa, apalagi tidak lama kemudian terungkap kejadian serupa di berbagai belahan negara. Presiden merasa perlu turun tangan dengan memanggil instansi terkait untuk menganalisis penyebab kejadian tersebut secepatnya.

Waktu berlalu, ternyata kejadian itu semakin banyak terungkap di publik. Sementara itu, laporan perkembangan kasus dari instansi terkait tidak kunjung juga selesai. Sang Presiden sudah mulai gerah dan memanggil segenap instansi terkait.

"Bagaimana ini, laporan belum kunjung juga selesai. Apakah harus menunggu kejadian ini terulang terus menerus???" sergah Presiden.

Salah satu bawahannya berkata,

"Betul Pak, kami merencanakan untuk melakukan analisis parametrik, jadi kami menunggu agar sampelnya terpenuhi. Ya minimal 30-lah!"

Simulasi Uji Beda

Penelitian bertujuan untuk melihat apakah terdapat perbedaan antara kebijakan pendanaan dan kebijakan deviden antara perusahaan bertumbuh dengan perusahaan tidak bertumbuh. Variabel yang dipergunakan adalah DER, D/MVE, DPR dan Yield.

1. Statistik Deskriptif
Berikut adalah deskripsi dari masing-masing variabel tersebut berdasarkan masing-masing kelompok:
Tabel 1
Statistik Deskriptif
                                         0 = Tidak Bertumbuh; 1 = Bertumbuh
Tabel di atas menunjukkan bahwa nilai DER, D/MVE, DPR dan Yield untuk perusahaan tidak bertumbuh (kode 0) lebih rendah dari pada perusahaan bertumbuh (kode 1). Berarti kebijakan pendanaan dan kebijakan deviden pada perusahaan tidak bertumbuh lebih rendah dari pada perusahaan bertumbuh. Demikian juga nilai standar deviasi untuk semua variabel pada perusahaan tidak bertumbuh lebih rendah dari pada perusahaan bertumbuh. Berarti fluktuasi kebijakan pendanaan dan kebijakan deviden pada perusahaan bertumbuh lebih bervariasi dari pada perusahaan tidak bertumbuh.

2.    Pengujian Hipotesis
Hipotesis penelitian ini adalah menguji apakah terdapat perbedaan antara kebijakan pendanaan dan kebijakan deviden antara 11 perusahaan tumbuh dengan 11 perusahaan tidak tumbuh. Langkah awal adalah dengan melihat normalitas data terlebih dahulu.

a. Uji Normalitas
Uji normalitas untuk menentukan jenis data yang akan diteliti. Jika data normal maka menggunakan analisis parametrik yaitu ANOVA yang diperkuat dengan Independent Sample t Test dan jika data tidak normal maka menggunakan analisis non parametrik yaitu uji Kruskall Wallis dan diperkuat dengan Mann-Whitney U-Test. Berikut adalah uji normalitas pada variabel DER, D/MVE, DPR dan Yield:
Tabel 2
Uji Normalitas
Distribusi normal dinyatakan dengan nilai signifikansi pada Uji Kolmogorov Smirnov di atas 0,05. Tampak pada tabel di atas bahwa ketiga variabel yang mempunyai signifikansi di atas 0,05 adalah DER (0,359), DPR (0,900) dan Yield (0,541). Dengan demikian, ketiga variabel tersebut adalah parametrik dan dikenakan analisis statistik parametrik. Variabel yang mempunyai signifikansi di bawah 0,05 adalah variabel D/MVE yaitu sebesar 0,016 yang berarti tidak normal dan dikenai statistik non parametrik.

b. Uji Homogenitas
Langkah berikutnya adalah melakukan uji homogenitas, di mana asumsi homogenitas terpenuhi jika nilai signifikansi pada Levene’s Test di atas 0,05. Berikut adalah uji homogenitas untuk ketiga variabel uji dalam penelitian ini:
Tabel 3
Uji Homogenitas

Tampak pada tabel di atas bahwa nilai signifikansi untuk ketiga variabel uji yaitu DER, DPR dan Yield di atas 0,05. Hasil tersebut menunjukkan bahwa asumsi homogenitas telah terpenuhi dan pengujian hipotesis dalam dilanjutkan.

c.  Uji Hipotesis
Berikut adalah pengujian hipotesis dengan metode One Way ANOVA dengan program SPSS:
Tabel 4
Pengujian Hipotesis

Nilai F hitung pada variabel DER adalah sebesar 0,029 dengan signifikansi sebesar 0,865. Nilai signifikansi di atas 0,05 yang menunjukkan bahwa tidak terdapat perbedaan yang signifikan antara DER pada perusahaan tidak tumbuh dengan DER pada perusahaan yang tumbuh. Dengan demikian hipotesis 1 dalam penelitian ini yang menyatakan bahwa ‘Perusahaan yang dikategorikan tumbuh mempunyai kebijakan pendanaan (debt to equity) yang lebih rendah dari pada perusahaan yang tidak tumbuh’ ditolak.

Nilai F hitung pada variabel DPR adalah sebesar 0,025 dengan signifikansi 0,875 (> 0,05). Demikian juga pada variabel Yield dengan signifikansi sebesar 0,828 (> 0,05). Berarti tidak terdapat perbedaan yang signifikan antara DPR dan Yield pada perusahaan tumbuh dengan DPR dan Yield pada perusahaan tidak tumbuh. Dengan demikian, hipotesis 2 dalam penelitian ini yang menyatakan bahwa ‘Perusahaan yang tumbuh mempunyai kebijakan deviden (devidend payout ratio dan devidend yield) yang lebih rendah dari pada perusahaan yang tidak tumbuh’ ditolak.

Untuk memperkuat hasil pengujian tersebut, dilakukan uji Independent Sample t Test yang dapat dilakukan karena data telah terdistribusi secara normal. Berikut adalah hasil pengujian dengan metode tersebut:
Tabel 5
Pengujian Hipotesis dengan Independent Sample t Test

Pengujian pada variabel DER memberikan nilai signifikansi pada uji Levene’s Test sebesar 0,758 yang menunjukkan bahwa varians DER pada perusahaan tumbuh dan tidak tumbuh adalah equal. Signifikansi pada uji t adalah sebesar 0,865 (> 0,05) yang berarti tidak perbedaan yang signifikan antara DER pada perusahaan tumbuh dengan DER pada perusahaan tidak tumbuh atau memperkuat pengujian hipotesis dengan ANOVA.

Uji Levene memberikan signifikansi sebesar 0,279 untuk DPR dan 0,455 untuk Yield yang keduanya di atas 0,05. Uji t memberikan signifikansi sebesar 0,875 untuk DPR dan sebesar 0,828 untuk Yield yang juga di atas 0,05. Hasil tersebut menunjukkan bahwa tidak terdapat perbedaan yang signifikan antara DPR dan Yield antara perusahaan tumbuh dengan perusahaan tidak tumbuh. Berarti hasil ini memperkuat hasil pengujian dengan ANOVA yang telah dilakukan sebelumnya.

Pengujian hipotesis untuk variabel D/MVE dengan statistik non parametrik yaitu Uji Kruskall Wallis memberikan hasil sebagai berikut:
Tabel 6
Pengujian Hipotesis D/MVE
Tabel di atas memberikan nilai signifikansi sebesar 0,412 (> 0,05) yang menunjukkan bahwa tidak terdapat perbedaan yang signifikana antara D/MVE perusahaan tumbuh dengan D/MVE perusahaan tidak tumbuh. Untuk memperkuat hasil tersebut digunakan Mann-Whitney U-Test yang memberikan hasil sebagai berikut:
Tabel 7
Pengujian Hipotesis D/MVE
Tampak bahwa pengujian dengan Mann Whitney U-Test memberikan hasil yang konsisten dengan Uji Kruskal Wallis karena signifikansi adalah 0,412 yang berada di atas 0,05. Dengan demikian hipotesis 1 dalam penelitian ini yang menyatakan bahwa ‘Perusahaan yang dikategorikan tumbuh mempunyai kebijakan pendanaan (debt to equity) yang lebih rendah dari pada perusahaan yang tidak tumbuh’ ditolak.

Simulasi One Way ANOVA

Analisis menggunakan perusahaan yang masuk kategori LQ 45 pada tahun 2007 sebagai sampel penelitian. Periode Januari sampai dengan Juni 2007 diumumkan perusahaan yang masuk kategori LQ 45 sebanyak 45 perusahaan. Pada pengumuman II Tahun 2007 yaitu untuk periode Juli sampai dengan Desember 2007 terdapat 12 perusahaan baru yang masuk kategori LQ 45. Dengan demikian, perusahaan yang terus menerus masuk kategori LQ 45 adalah sebanyak 33 perusahaan. Dari ke-33 perusahaan tersebut, perusahaan ANTM melakukan stock split pada bulan Juli 2007 sehingga dikeluarkan dari sampel penelitian. Selain itu juga terdapat 12 perusahaan yang mengeluarkan kebijakan lain, sehingga pergerakan harga saham dipengaruhi oleh kebijakan itu, bukan oleh hari perdagangan. Dengan demikian, penelitian ini menggunakan sampel sebanyak 20 perusahaan.

Penelitian bertujuan untuk menguji hipotesis pengaruh hari perdagangan terhadap return saham serta fenomena-fenomena yang berkaitan dengan day of the week effect yaitu Monday effect, week four effect dan Rogalski effect.

1.  Hipotesis The Day of The Week Effect dan Monday Effect
The day of the week effect adalah untuk menguji apakah terdapat perbedaan return antara Hari Senin dengan hari-hari lainnya dalam seminggu; dan Monday effect adalah bagian dari day of the week effect yaitu bahwa return pada hari Senin cenderung negatif dibandingkan hari yang lain dalam seminggu.

Hipotesis pertama diuji dengan uji ANOVA, yang mensyaratkan adanya uji asumsi, yaitu sebagai berikut:
a.  Uji Normalitas
Berikut adalah uji normalitas pada penelitian ini dengan menggunakan Plot grafik:
Gambar 1
Diagram Uji Normalitas
Grafik di atas menunjukkan bahwa titik-titik pada grafik telah mendekati sumbu diagonalnya atau membentuk sudut 450 dengan sumbu mendatar. Berarti dapat diinterpretasikan bahwa data telah terdistribusi secara normal dan memenuhi asumsi pada uji ANOVA. Untuk memperkuat hasil pengujian tersebut, maka digunakan uji statistik Kolmogorov Smirnov, di mana distribusi yang normal ditunjukkan dengan signifikansi di atas 0,05.
Tabel 1
Uji Normalitas dengan Kolmogorov Smirnov
Tabel di atas memberikan signifikansi di bawah 0,05 yang menunjukkan bahwa asumsi normalitas belum terpenuhi. Normalisasi dilakukan dengan menghilangkan data outliers, yaitu data yang menyimpang terlalu jauh dari data yang lainnya. Data yang masuk kategori outliers adalah data yang mempunyai nilai Zscore < + 3. Berikut adalah uji normalitas tanpa data outliers.
Tabel 2
Uji Normalitas tanpa Data Outliers
Tabel di atas memberikan nilai signifikansi sebesar 0,393 yang menunjukkan bahwa asumsi normalitas telah terpenuhi. Tampak juga bahwa data menjadi 242 atau berkurang 4 data.

b.  Uji Random Sampling
Uji random sampling adalah untuk melihat apakah data telah terdistribusi secara acak atau tidak (tidak ada pola tertentu pada distribusi data). Pengujian dilakukan dengan metode Run Test di mana asumsi keacakan data ditunjukkan dengan signifikansi di atas 0,05.
Tabel 3
Uji Random Sampling
Tabel di atas memberikan nilai signifikansi sebesar 0,897 (> 0,05) yang menunjukkan bahwa data telah memenuhi asumsi random sampling yang diperlukan dalam uji ANOVA.

c.  Uji Homogenitas
Uji Homogenitas dilakukan dengan melihat nilai Levene’s di mana asumsi homogenitas terpenuhi jika signifikansi di atas 0,05.
Tabel 4
Uji Homogenitas

Tabel di atas memberikan nilai Levene Statistic sebesar 1,139 dengan signifikansi sebesar 0,339 (> 0,05). Hasil tersebut menunjukkan bahwa tidak terdapat perbedaan varians yang signifikan pada distribusi data, atau dapat diinterpretasikan bahwa data telah terdistribusi secara homogen. Dengan demikian, uji homogenitas memenuhi asumsi yang diperlukan pada Uji ANOVA.

d. Pengujian Hipotesis 1
Dengan terpenuhinya uji asumi, maka berikut adalah pengujian hipotesis 1 pada penelitian ini:
Tabel 5
Uji ANOVA

Tabel di atas memberikan nilai F hitung sebesar 0,525 dengan signifikansi sebesar 0,718 (> 0,05). Berarti tidak terdapat perbedaan yang signifikan antara return pada hari perdagangan saham. Hal ini mengindikasikan adanya penolakan untuk hipotesis 1 dalam penelitian ini. Berikut adalah pengujian post hocs yaitu untuk melihat perbedaan antara masing-masing hari perdagangan:
Tabel 6
Post Hoc Test

Tabel di atas menunjukkan bahwa tidak terdapat signifikansi yang berada di bawah 0,05. Hal ini menunjukkan bahwa tidak ada perbedaan yang signifikan antara return pada hari-hari perdagangan. Hasil ini memperkuat indikasi pengujian ANOVA yang menunjukkan bahwa tidak terdapat perbedaan return yang signifikan berdasarkan hari-hari perdagangan. Dengan kata lain dapat dinyatakan bahwa tidak terdapat pengaruh antara hari perdagangan terhadap return saham. Dengan demikian hipotesis Ha1 dalam penelitian ini yang menyatakan bahwa ‘Diduga terjadi the day of the week effect dan Monday Effect di Bursa Efek Indonesia’ ditolak.

e.  Statistik Deskriptif
Untuk mendapatkan gambaran tentang return harian, maka berikut adalah statistik deskriptif pada hipotesis pertama:
Tabel 7
Statistik Deskriptif Return Harian

Tabel di atas menunjukkan bahwa rata-rata return pada hari Senin adalah sebesar 0,002754 dengan rentang antara -0,0488 sampai dengan 0,0386. Tampak bahwa rata-rata return harian pada hari Senin bukan merupakan yang terendah dibandingkan rata-rata return harian pada hari lainnya. Berikut adalah plot diagram rata-rata return berdasarkan hari perdagangan:
Gambar 2
Diagram Rata-rata Return
Rata-rata return harian yang paling rendah adalah para Hari Jumat yaitu sebesar 0,001178 dan yang tertinggi adalah return pada Hari Kamis yaitu sebesar 0,005524. Tampak bahwa tidak ada hari yang mempunyai rata-rata return negatif sepanjang tahun 2007. Diagram plot rata-rata juga menunjukkan bahwa Hari Senin mempunyai rata-rata kedua terendah setelah Hari Jumat.

2. Hipotesis Week Four Effect
Week four effect adalah terjadinya return negatif pada minggu keempat (atau kelima) pada setiap bulannya. Data return pada Senin Minggu Keempat dikumpulkan, dan jika terdapat Minggu Kelima, maka yang dipergunakan adalah data pada Minggu Kelima. Pengujian dilakukan dengan one sample t test yang mensyaratkan adanya normalitas pada distribusi data.
Gambar 3
Diagram Normalitas Hipotesis 2

Grafik di atas menunjukkan bahwa terdapat titik-titik yang kosong pada tengah grafik yang menunjukkan bahwa data mempunyai kecenderungan mengumpul di tengah, seperti tampak pada histogram berikut:
Gambar 4
Histogram Hipotesis 2
Tampak pada grafik bahwa bentuknya sudah menyerupai lonceng, meskipun terdapat data yang mengumpul di tengah. Berarti dapat diinterpretasikan bahwa data telah terdistribusi secara normal dan memenuhi asumsi pada uji one sample t test. Berikut adalah uji one sample t test untuk menguji hipotesis 2 dalam penelitian ini:
Tabel 8
Uji Hipotesis 2

Tabel di atas memberikan nilai t hitung sebesar 5,019 dengan signifikansi sebesar 0,000 (< 0,05). Hal ini menunjukkan bahwa return pada Hari Senin minggu keempat atau kelima adalah positif dan signifikan. Hasil ini berkebalikan dengan definisi week four effect yang menyatakan bahwa pada Senin minggu keempat return saham adalah negatif dan signifikan. Dengan demikian, tidak terjadi week four effect pada BEI dan hipotesis Ha2 dalam penelitian ini yang menyatakan bahwa ‘Diduga terjadi week four effect di Bursa Efek Indonesia (Return pada Senin minggu keempat adalah negatif)’ ditolak.

4.  Hipotesis Rogalski Effect
Rogalski effect adalah menghilangnya return negatif yang terjadi pada hari Senin pada bulan tertentu. Penelitian ini menggunakan bulan April berkaitan dengan penyerahan laporan keuangan perusahaan. Berarti diharapkan terjadi perbedaan return pada hari Senin Bulan April dengan return pada Hari Senin selain April. Pengujian menggunakan Independent Sample t Test yaitu sebagai berikut:
Tabel 9
Statistik Deskriptif

Tabel di atas menunjukkan bahwa terdapat 860 data return saham harian pada Hari Senin selain bulan April (20 perusahaan x 43 Senin) dan 100 data untuk return saham harian pada bulan April (20 perusahaan x 5 Senin)). Rata-rata return saham pada Hari Senin selain April (kode 0) adalah sebesar 0,002895 yang lebih kecil dari pada rata-rata return saham harian pada Hari Senin pada Bulan April (kode 1) yaitu sebesar 0,005354. Berikut adalah uji statistik apakah terdapat perbedaan yang signifikan antara kedua sampel data tersebut:
Tabel 10
Pengujian Hipotesis 3

Tabel di atas memberikan nilai F sebesar 10,542 dengan signifikansi sebesar 0,001 yang menunjukkan bahwa terdapat perbedaan varians yang signifikan antara kedua sampel data. Berarti nilai t hitung yang digunakan adalah nilai t pada equal variances not assumed karena kedua varians berbeda secara signifikan. Nilai t hitung adalah sebesar -0,987 dengan signifikansi sebesar 0,325 (> 0,05). Nilai ini menunjukkan bahwa tidak terdapat perbedaan yang signifikan antara return saham harian pada Hari Senin di Bulan April dengan return saham harian pada Hari Senin selain Bulan April. Dengan demikian hipotesis Ha3 dalam penelitian ini yang menyatakan bahwa ‘Diduga terjadi Rogalski Effect di Bursa Efek Indonesia (Return saham pada Hari Senin di Bulan April lebih tinggi dari pada Hari Senin di Bulan selain April)’ ditolak.

Simulasi Regresi Logistik dengan SPSS

Simulasi menggunakan populasi perusahaan perbankan pada Bursa Efek Indonesia pada tahun 2006 sampai dengan 2008 yaitu sebanyak 22 perusahaan

Statistik Deskriptif
Penelitian ini menggunakan 2 buah variabel bebas dan 1 buah variabel terikat yaitu kegagalan usaha bank. Variabel kegagalan usaha bank diukur menggunakan dummy variabel (0 dan 1) sehingga analisis deskriptifnya dipisahkan karena tidak bisa diukur rata-ratanya.
Tabel 1
Statistik Deskriptif Altman dan Ukuran Perusahaan


Tabel di atas menunjukkan bahwa nilai rata-rata Z score pada Altman adalah antara -4,357 sampai dengan 0,573 dengan rata-rata sebesar 0,2362. Nilai rata-rata tersebut di bawah 1,20 yang menunjukkan bahwa perusahaan sampel berada dalam risiko tinggi untuk mengalami kegagalan usaha. Variabel ukuran perusahaan menunjukkan bahwa ukuran paling kecil adalah sebesar Rp. 972,457 Milliar dan perusahaan terbesar mempunyai assets sebesar Rp. 358,438 Triliun dengan rata-rata sebesar Rp. 63,441 Triliun. Dalam perhitungan selanjutnya nilai asset ditransformasikan ke dalam bentuk logaritma natural agar nilainya tidak jauh dengan variabel yang lain.
Berdasarkan kegagalan usaha bank, maka deskriptif variabel penelitian menjadi sebagai berikut:
Tabel 2
Statistik Deskriptif Altman dan Ukuran Perusahaan Berdasarkan Kegagalan Usaha Bank
Keterangan:    0 : Bank Tidak Gagal;    1 : Bank Gagal

Tabel di atas menunjukkan bahwa perusahaan yang melakukan mengalami kegagalan usaha (kode 1) mempunyai score Altman yang lebih rendah dibandingkan perusahaan yang tidak mengalami kegagalan usaha bank (0,17525 < 0,24660). Berarti perusahaan yang mengalami kegagalan usaha bank mempunyai tingkat risiko yang tinggi dibandingkan perusahaan yang tidak mengalami kegagalan usaha. Akan tetapi, perusahaan yang mengalami kegagalan usaha bank (kode 1) mempunyai total asset yang lebih tinggi dibandingkan perusahaan yang tidak mengalami kegagalan usaha bank.

2.    Regresi Logistik
Penelitian menggunakan analisis regresi logistik karena variabel terikat (kegagalan usaha bank) menggunakan variabel dummy yaitu 0 (tidak mengalami kegagalan usaha bank) dan 1 (mengalami kegagalan usaha bank). Penggunaan regresi logistik tidak memerlukan uji asumsi klasik data seperti pada regresi linear.
a. Identifikasi Data Outliers
Data outliers adalah data yang menyimpang terlalu jauh dari data lainnya dalam suatu kelompok. Data ini mengakibatkan model menjadi kurang baik sehingga harus dikeluarkan dari model penelitian. Berikut adalah identifikasi data outliers dalam penelitian ini:
Tabel 3
Data Outliers Iterasi 1

Tabel di atas menunjukkan bahwa terdapat 4 buah data outliers yaitu data ke-11, ke-15, ke-49 dan ke-58. Data ke-11, ke-15 dan ke-49 juga mengalami miss-specification yaitu merupakan anggota kelompok (group) 1 (mengalami kegagalan usaha bank) akan tetapi prediksi model memberikan hasil tidak mengalami kegagalan usaha bank (predicted group = 0). Berarti ketiga data tersebut harus dikeluarkan dari model penelitian. Sedangkan data ke-58, meskipun masuk kategori outlier akan tetapi tidak mengalami miss-specification karena observed sama dengan predicted group yaitu 0 (tidak mengalami kegagalan usaha bank). Untuk analisis selanjutnya, data ke-11, ke-15 dan ke-49 dikeluarkan dari model penelitian.

b.  Menilai kelayakan model regresi (goodness of fit)
Nilai -2 Log Likelihood pada Beginning Block adalah sebesar 34,929 pada iterasi ke-5. Nilai tersebut merupakan nilai Chi Square yang dibandingkan dengan nilai Chi Square pada tabel dengan df sebesar N – 1 = 63 – 1 = 62 pada taraf signifikansi 0,05 yaitu sebesar 81,381. Tampak bahwa -2 Log Likelihood < Chi Square tabel (34,929 < 81,381) yang menunjukkan bahwa tidak terdapat perbedaan yang signifikan antara model dengan konstanta saja dengan data. Hal ini menunjukkan bahwa model dengan konstanta saja telah fit. Berikut adalah nilai -2 Log Likelihood dalam penelitian ini:
Tabel 4
Iteration History(a,b,c) dengan Konstanta
Selanjutnya, pengujian fit atau tidaknya model dengan data dilakukan dengan memasukkan variabel bebas sebanyak 2 buah sehingga mempunyai df sebesar 63 – 2 - 1 = 60 dan mempunyai nilai chi square tabel sebesar 79,0819 pada signifikansi 0,05. Sedangkan nilai -2 Log Likelihood dengan memasukkan variabel bebas adalah sebagai berikut:
Tabel 5
Iteration History (a,b,c) dengan Variabel Bebas
Tampak bahwa nilai -2 Log Likelihood < Chi Square tabel (19,151 < 79,0819) yang menunjukkan bahwa model dengan memasukkan variabel bebas adalah fit dengan data. Hal ini menunjukkan bahwa model layak untuk dipergunakan.
Jika ingin melihat selisih dari kedua nilai di atas yaitu antara Blok 0 dengan Blok 1, maka dilakukan dengan mengurangkan nilainya yaitu 34,929 – 19,151 = 15,778 dan Program SPSS juga menampilkan selisih tersebut yaitu sebagai berikut:
Tabel 6
Omnibus Test

Tampak bahwa selisihnya adalah sebesar 15,778 dengan signifikansi sebesar 0,000 (< 0,05) yang menunjukkan bahwa penambahan variabel bebas memberikan pengaruh nyata terhadap model, atau dengan kata lain model dinyatakan fit.
Lebih lanjut, untuk melihat apakah data empiris cocok dengan model (tidak ada perbedaan antara model dengan data) dilakukan dengan melihat nilai Hosmer and Lemeshow Test yaitu sebagai berikut:
Tabel 7
Hosmer and Lemeshow Test

Nilai Chi Square tabel untuk df 8 pada taraf signifikansi 0,05 adalah sebesar 15,5073 sehingga Chi Square hitung < Chi Square tabel (0,334 < 15,5073). Tampak juga bahwa nilai signifikansi adalah sebesar 1,00 (> 0,05) yang menunjukkan bahwa model dapat diterima dan pengujian hipotesis dapat dilakukan.
Untuk melihat kemampuan variabel bebas dalam menjelaskan varians ketepatan penyampaian laporan keuangan, digunakan nilai Cox dan Snell R Square dan Nagelkerke R Square sebagai berikut:
Tabel 8
Model Summary

Nilai Nagelkerke R Square sebesar 0,521 yang lebih besar dari pada Cox dan Snell R Square, yang menunjukkan bahwa kemampuan kedua variabel bebas dalam menjelaskan varians kegagalan usaha bank adalah sebesar 52,1% dan terdapat 47,9% faktor lain yang menjelaskan varians kegagalan usaha bank. Untuk melihat ketepatan model yang dibentuk dilihat dengan Klasifikasi tabel sebagai berikut:
Tabel 9
Classification Table (a,b)

Sampel yang tidak mengalami kegagalan usaha bank (0) adalah sebanyak 58 perusahaan. Hasil prediksi model pada Tabel di atas adalah 56 perusahaan tidak mengalami kegagalan usaha bank (0) dan 2 perusahaan mengalami kegagalan usaha bank (1). Berarti terdapat 2 prediksi yang salah atau 56 prediksi yang tepat sehingga prediksi yang benar adalah sebanyak 56/58 = 96,6%. Sedangkan untuk perusahaan yang mengalami kegagalan usaha bank, diprediksi salah semua oleh model. Dengan demikian tabel di atas memberikan nilai overall percentage sebesar 56/63 = 88,9% yang berarti ketepatan model penelitian ini adalah sebesar 88,9%.

c. Pengujian Hipotesis
Setelah diperoleh model yang fit terhadap data, maka langkah selanjutnya adalah dilakukan uji hipotesis. Pengujian hipotesis dilakukan untuk menjawab pertanyaan penelitian ini. Berikut adalah hasil pengujian hipotesis dalam penelitian ini:
Tabel 10
Uji Hipotesis

Interpretasi terhadap persamaan tersebut beserta uji hipotesis akan diberikan sebagai berikut:
1)  Hipotesis 1
Taraf signifikansi untuk variabel Altman adalah sebesar 0,443. Nilai tersebut di atas 0,05 sehingga diinterpretasikan bahwa variabel Altman tidak mempunyai pengaruh yang signifikan terhadap tingkat kegagalan usaha bank. Dengan demikian hipotesis 1 dalam penelitian ini yang berbunyi “Diduga ada pengaruh Metode Altman terhadap tingkat kegagalan usaha bank” ditolak.

2)  Hipotesis 2
Taraf signifikansi untuk variabel ukuran perusahaan adalah sebesar 0,042. Nilai tersebut di bawah 0,05 sehingga diinterpretasikan bahwa variabel ukuran perusahaan mempunyai pengaruh yang signifikan terhadap kegagalan usaha bank. Nilai konstanta adalah negatif yang menunjukkan bahwa pengaruh antara ukuran perusahaan terhadap kegagalan usaha bank adalah negatif. Dengan demikian hipotesis 2 dalam penelitian ini yang berbunyi “Diduga ada pengaruh negatif besaran (size) terhadap tingkat kegagalan usaha bank” tidak dapat ditolak. Konstanta dari variabel adalah sebesar -2,720. Dengan demikian maka nilai e-2,719= 0,066. Sehingga jika diasumsikan variabel yang lain tetap, maka semakin tinggi ukuran perusahaan maka kemungkinan mengalami kegagalan usaha bank menurun 0,066 kali dibandingkan perusahaan yang mengalami penurunan ukuran perusahaan.

Artikel Terkait:
  1. Simulasi Regresi Logistik yang lain
  2. Regresi Logistik dengan Multikolinearitas
  3. Analisis Diskriminan 

Humor Statistik: Statistik Narapidana

Seorang peneliti baru saja merilis suatu hasil penelitian tentang intelejensi para koruptor di Indonesia. Salah satu hasil kesimpulan penelitian tersebut adalah bahwa rata-rata intelejensi para koruptor tersebut adalah rendah, sehingga mereka terjerumus untuk melakukan tidak tercela tersebut. Dalam satu seminar seorang peserta bertanya,

"Dari mana Anda mendapatkan subjek untuk diteliti?"
"Dari penjara!" jawab sang peneliti mantap.
"Ya jelas saja", sambung penanya, "koruptor yang cerdas dengan intelejensi tinggi tentunya tidak tertangkap!"

Baca humor statistik yang lain

Mengapa Menggunakan Statistik Non Parametris

Statistik non parametrik dikenakan pada data yang berbentuk nominal atau ordinal, atau bisa juga kepada data berbentuk interval atau rasio, di mana asumsi pada statistik parametrik tidak terpenuhi. Selain itu, statistik non parametrik juga dapat digunakan untuk jumlah sampel yang kecil, di mana tidak dimungkinkan untuk menambah jumlah sampel. Tidak ada ukuran yang jelas tentang besar kecilnya jumlah sampel, tapi banyak para ahli yang menyatakan bahwa di bawah 30 sebagai sampel kecil.

Beberapa alasan menggunakan statistik non parametrik adalah sebagai berikut: (Castellan, 1998)
  1. Ukuran sampel relatif kecil. Banyak kasus dalam penelitian di mana tidak mungkin lagi menambahkan jumlah sampel dengan berbagai pertimbangan. Salah satu contohnya adalah kasus-kasus dalam dunia medis.
  2. Statistik non parametrik memiliki asumsi yang relatif sedikit berkaitan dengan data dibandingkan statistik parametrik.
  3. Statistik non parametrik dapat digunakan untuk menganalisis data dalam bentuk ranking atau ordinal. Banyak kasus dalam penelitian, di mana peneliti harus menyatakan bahwa variabel A lebih tinggi (atau lebih rendah) dari pada variabel B, tanpa mengetahui seberapa besar ukuran A dibandingkan ukuran B. Contoh lain, juara 1 suatu lomba tidak diketahui seberapa perbandingannya dengan juara 2 atau juara 3, demikian seterusnya.
  4. Statistik non parametrik cocok digunakan untuk menganalisis data yang bersifat klasifikasi atau kategorikal, di mana dalam praktek banyak ketersediaan data dalam bentuk klasifikasi.
  5. Statistik non parametrik menyediakan analisis yang cocok untuk menguji sampel yang berasal dari observasi yang diambil dari populasi yang berbeda.
  6. Statistik non parametrik secara umum lebih bersifat sederhana dan menggunakan teknik perhitungan yang lebih sederhana dari pada statistik parametrik.
Akan tetapi tidak dapat dikatakan bahwa statistik non parametrik lebih atau kurang dibandingkan statistik parametrik. Keduanya saling melengkapi dan masing-masing dapat dipergunakan sesuai dengan kondisi atau ketersediaan data yang ada.

Humor Statistik: 2 - 3 = -1

Tiga orang profeor, dalam bidang psikolog, biologi dan statistik sedang santai sambil minum kopi di kantin kampus. Tepat di hadapan mereka, terdapat satu rumah kosong. Suatu saat, dua orang masuk ke dalam rumah tersebut, dan setelah sekitar setengah jam, keluarlah tiga orang dari dalam rumah tersebut. Profesor Psikologi berkata,

"Ah, rupanya persepsi saya tentang jumlah orang yang masuk ke rumah itu salah. Mungkin unconcious state saya yang lebih dominan"
"Ah, itu hanyalah proses biologi sederhana, adanya pertukaran enzim dalam lingkungan yang kondusif akan menciptakan spesies baru," sahut profesor biologi.
"Bicara apa kalian ini?" tukas profesor statistik. "Itu hanya penjumlahan sederhana yang sudah diajarkan di Sekolah Dasar. Jika nanti ada satu orang lagi masuk ke rumah itu, maka tidak ada orang di dalam rumah tersebut!"

Baca humor statistik yang lain

Simulasi Olah data dengan Lisrel 8.30

Berikut adalah simulasi analisis data dengan menggunakan Program Lisrel Versi 8.30. Silahkan download

Humor Statistik: Mahasiswi dan Dosen Statistik

Seorang mahasiswi yang sangat alergi dengan mata kuliah statistik berniat menemui dosen statistik yang masih terbilang relatif muda. Setelah masuk ke ruangan dosen, segera mahasiswi tersebut menggoda dosen dan berkata,

"Pak, saya bersedia melakukan apa saja asalkan saya mendapat nilai A untuk mata kuliah statistik!" Sang dosen menatap dalam-dalam sambil berkata,
"Apa maksud saudara?" Merasa mendapat angin baik, mahasiswi tersebut segera melepas ikat rambutnya sehingga terurai, berjalan dengan seksi dan berlutut di hadapan dosen.
"Saya bersedia melakukan apa saja! Apapun yang Bapak minta!" katanya penuh makna. Dosen menatap lebih dalam sambil menunduk, melepas kaca matanya dan berkata,
"Benar kamu mau melakukan apa saja?" Mahasiswa mengangguk sambil tersenyum. "Tidak ada yang tahu akan hal ini?" Mahasiswa kembali mengangguk dengan puas.
"Baiklah", kata dosen, "maukah kamu...........BELAJAR!!!!!!!"

Baca humor statistik yang lain

Humor Statistik: Statistikawan dan Surga

Alkisah, tiga orang sedang mengantri di akhirat, yaitu politikus, pengacara dan statistikawan. Malaikat penjaga surga melihat catatan dan segera menyuruh politikus masuk ke surga. Berikutnya, malaikat tersebut juga membuka pintu surga bagi pengacara. Ketika melihat statistikawan, malaikat menutup pintu surga dan membuka pintu neraka.

Spontan, ahli statistik protes kepada malaikat. Malaikat yang sabar membuka catatan dan berkata,
"Maaf, politikus tadi telah membuat banyak kebijakan yang mensejahterakan rakyat. Demikian juga dengan pengacara tadi yang telah membela orang yang tidak bersalah. Akan tetapi, selama hidupmu di dunia, kamu hanya melakukan perhitungan saja, dan tidak pernah membuat kesimpulan, apalagi berbuat sesuatu!"

Baca humor statistik yang lain

Humor Statistik: Lagi, Cerita tentang Kemungkinan

Seorang agen rahasia menyatakan bersedia untuk menjalankan suatu misi penting yang sangat berbahaya, termasuk keselamatan nyawanya. Temannya heran dan berkata,

"Hebat, saya salut. Ini misi yang sangat berbahaya dan sudah banyak teman kita yang gagal dan meninggal dalam tugas!"
"Yah, saya tahu itu", jawabnya. "Kemungkinan keberhasilan hanya 10% dan saya sudah menghitung bawah telah ada 9 teman kita yang gagal dalam misi ini!"

Olah Data dengan Lisrel

LISREL merupakan salah satu program yang dirancang untuk menyelesaikan Structural Equation Modelling (SEM) Berbasis Covariance. Bahkan mungkin (?) salah satu yang paling canggih di antara program sejenis. LISREL juga lah yang mengembangkan notasi yang dipergunakan dalam SEM dan beberapa program sejenis menggunakan notasi tersebut, di antaranya Program AMOS (Analysis of Moment Structure).

LISREL mempunyai kemampuan untuk menyelesaikan persamaan struktural yang relatif rumit, karena pengguna tidak perlu menggambarkan path diagramnya, tetapi hanya menuliskan notasinya, dan Program akan secara otomotis menggambarkan model yang kita bentuk. Hal ini akan memudahkan kita dalam melakukan estimasi, mengingat keterbatasan layar monitor yang tersedia, sehingga kita sering kesulitan untuk menggambarkan model penelitian kita. Akan tetapi, LISREL juga dirancang untuk melakukan penggambaran path diagram.


Dengan menggunakan cara script, memang akan memberikan kesulitan bagi pengguna, karena harus menghapalkan notasi-notasi yang dipergunakan. Selain itu, script yang dipergunakan bersifat sensitif, sehingga salah ketik membuat program menjadi error. Bahkan penggunaan huruf besar dan huruf kecil merupakan hal yang penting dalam penulisan sricpt.

LISREL telah menyediakan menu untuk analisis data yang tidak normal, misalnya data ordinal. Program LISREL akhir-akhir ini mempunyai menu untuk analisis faktor dengan menggunakan data ordinal. Berikut adalah simulasi olah data dengan Lisrel, silahkan di download