Cari Materi

Simulasi Multikolinearitas pada Regresi Logistik

Uji asumsi klasik yang sering dipergunakan dalam regresi linear berganda adalah uji normalitas, uji heteroskedastisitas, uji autokorelasi dan uji multikolinearitas. Dari keempat uji tersebut, jika kita simak maka uji normalitas, uji heteroskedastisitas dan uji autokorelasi berkaitan dengan nilai residualnya, sedangkan uji multikolinearitas berkaitan dengan variabel bebasnya. Regresi logistik adalah regresi di mana variabel terikatnya adalah dummy, yaitu 1 dan 0. Dengan demikian, residualnya yang merupakan selisih antara nilai prediksi dengan nilai sebenarnya tidak perlu dilakukan ketiga uji tersebut. Akan tetapi untuk uji multikolinearitas, karena hanya melibatkan variabel bebas, maka masih diperlukan uji tersebut. Mannual book SPSS menuliskan ‘Preferably, your predictors should not be highly correlated’. Sedangkan untuk autokorelasi pada time series akan dibahas belakangan.

1.    Objek penelitian
Penelitian menggunakan populasi seluruh perusahaan consumer goods, food and beverages dan tobacco pada Bursa Efek Indonesia pada periode tahun 2006 sampai dengan tahun 2008, di mana berdasarkan ICMD terdapat 25 perusahaan. Penelitian ini menggunakan 7 buah variabel bebas dan 1 buah variabel terikat yaitu financial distress. Adapun variabel bebasnya adalah NPM, CR, TATO, ROE, DTA, Posisi Kas dan Pertumbuhan.

2.    Menilai kelayakan model regresi (goodness of fit)
Penelitian menggunakan analisis regresi logistik karena variabel terikat (financial distress) menggunakan variabel dummy yaitu 0 (tidak mengalami financial distress) dan 1 (mengalami financial distress). Jumlah data yang dipergunakan adalah sebanyak 25 x 3 tahun = 75 data dengan mengeluarkan 1 buah data karena tidak memenuhi kriteria. Dengan demikian data yang dipergunakan adalah sebanyak 74 buah.