Uji validitas adalah uji statistik yang dipergunakan untuk mengukur valid atau tidaknya sudah kuesioner. Suatu rangkaian kuesioner harus diuji validitas terlebih dahulu sebelum dipergunakan sebagai sumber data penelitian. Sebenarnya juga ada uji reliabilitas, tetapi tidak dibahas di sini. Akan tetapi kuesioner yang mengukur suatu fakta memang tidak perlu diuji validitas atau reliabilitasnya, misalnya yang berisi pertanyaan jenis kelamin, alamat dan sejenisnya, tidak perlu diuji validitasnya. Kuesioner yang mengukur respons sangat perlu untuk diuji validitasdan reliabilitasnya karena merupakan alat ukur. Kita harus punya alat ukur yang valid dan reliabel. Valid berarti mampu mengukur apa yang ingin diukur, dan reliabel berarti akan memberikan hasil yang relatif saja jika dipergunakan untuk mengukur suatu objek yang relatif sama.
Uji validitas tidak semata-mata menggunakan uji statistik. Ada juga uji yang lain, misalnya pendapat dari seorang ahli, meskipun di sini istilah 'ahli' harus diambil secara hati-hati. Juga dapat dilakukan dengan cara mengecek langsung, jika memungkinkan. Misalnya pertanyaan berapa kali bolos sekolah, bisa juga dilihat dari data absensi. Atau gaji seseorang bisa dilihat dari sumber lain.
Berikut akan dibahas uji validitas yang meliputi uji Korelasi Pearson, Corrected Item to total correlation dan Analisis faktor.
1. Korelasi Pearson
Korelasi Pearson, atau juga sering disebut Product Moment dapat dipergunakan untuk menguji validitas suatu item dalam kuesioner. Persamaannya sudah populer yaitu sebagai berikut:
Aplikasi dengan SPSS dilakukan dengan memilih Analyze, pilih Correlate lalu klik pada Bivariate seperti pada gambar di bawah:
Gambar 1 Box Dialog Korelasi Pearson
Setelah Klik pada Bivariate, maka akan diarahkan ke Box sebagai berikut:
2. Corrected Item to Total Correlation
Metode ini sebenarnya sama dengan Product Moment, hanya mengurangi efek Spurious overlaps sehingga banyak yang menyatakan bahwa metode ini lebih akurat dalam mengukur validitas. Konsepnya sederhana, sebuah indikator dicari korelasinya dengan skor total, yang di dalam skor total tersebut juga mengandung unsur skor indikator yang kita ukur. Jadi seperti diukur dua kali sehingga cenderung memberikan hasil yang lebih tinggi dari yang sebenarnya.
Solusinya sederhana, yaitu dengan mengeluarkan indikator yang sedang kita ukur dari skor totalnya. Pada contoh ini, ketika menghitung validitas X11 maka skor totalnya hanya penjumlahan dari X12 sampai dengan X15 atau skor total awal dikurangi X11. Demikian juga analogi dengan indikator yang lain. Kita tidak perlu menghitung satu persatu, karena SPSS sudah menyediakan menu untuk keperluan itu. Klik Analyze, pilih pada Scale lalu klik pada Reliability Analysis seperti pada gambar berikut:
Gambar 5 Menu Untuk Corrected Item to Total Correlation
Setelah Anda klik, maka akan diarahkan ke Box sebagai berikut:
Gambar 6 Memasukkan Semua Indikator
Masukkan kelima indikator (skor total tidak usah dimasukkan) lalu klik pada Statistic di kanan atas sehingga akan masuk ke box berikutnya sebagai berikut:
Gambar 7 Menu Statistic
Klik pada Scale if Item Deleted. Abaikan yang lain, klik Continue lalu Klik OK sehingga akan keluar output sebagai berikut:
Gambar 8 Output Correctect Item-Total Correlation
Tampak bahwa nilai r hitung untuk X11 adalah sebesar 0,471 yang lebih rendah dibandingkan r hitung pada product moment yaitu sebesar 0,659. Demikian juga dengan indikator yang lain yang mengalami penurunan nilai r hitung. Nilai r pada Gambar 8 dianggap lebih sesuai karena menghilangkan faktor spuorious overlaps. Justifikasinya sama, yaitu dengan membandingkan dengan r tabel.
3. Analisis Faktor
Analisis faktor bisa dipergunakan untuk melihat apakah suatu indikator mampu membentuk suatu variabel tertentu. Simulasi Analisis faktor telah ada di link ini. Berikut akan diberikan simulasi atau contoh yang lain untuk analisis faktor.
Klik Analyze, pihlih Dimention Reduction, lalu klik pada Factor. Anda akan diarahkan ke menu analisis faktor sebagai berikut:
Gambar 9 Menu Analisis Faktor
Anda akan diarahkan ke Box sebagai berikut:
Gambar 10 Memasukkan Indikator
Masukkan indikator X11 sampai dengan X15 tanpa memasukkan skor totalnya dan juga indikator X21 sampai dengan X24. Lalu klik Descriptives di kanan atas.
Gambar 11 Menu Descriptives pada Analisis Faktor
Nilai KMO adalah sebesar 0,702 dan nilai yang diharapkan adalah di atas 0,5. Berarti pengujian dapat diteruskan.
Tidak ada komentar:
Posting Komentar
Baca dulu sebelum tulis komentar:
Sebelum menuliskan pertanyaan, mohon disimak tanya jawab yang ada terlebih dahulu. Pertanyaan yang sama atau senada biasanya tidak terjawab. Atau simak dulu di Mengapa Pertanyaan Saya Tidak Dijawab?
Simak juga Channel kami di Statistik TV
Terima kasih.