Uji Reliabilitas Split-Half dengan SPSS Versi 23

Uji reliabilitas adalah untuk melihat apakah suatu instrumen (rangkaian kuesioner) cukup dapat dipercaya untuk digunakan sebagai sarana untuk mengumpulkan data. Kuesinoer yang baik tidak akan bersifat tendensius atau mengarahkan responden untuk memilih jawaban-jawaban tertentu. Salah satu metode yang akan dibahas di artikel ini adalah uji reliabilitas menggunakan rumus Spearman-Brown atau juga sering disebut dengan Split-half.

Dari namanya, split-half sepertinya sudah bisa  dikira-kira atau ditebak bahwa metode ini membagi data menjadi dua bagian (atau setengahnya). Iya memang benar. Metode ini memang dilakukan dengan membelah atau membagi dua jawaban-jawaban yang telah diberikan oleh responden lalu diuji reliabilitasnya. Cara membelahnya memang tidak ada aturan pasti, bisa diambil setengah di awal dan setengah akhir, atau nomor indikator yang genap dengan yang ganjil. Setelah itu kedua data tadi dicari korelasinya, lalu hasil korelasinya dimasukkan ke dalam persamaan Spearman-Brown, yaitu sebagai berikut:

Rumus Reliabilitas Spearman Brown
Rumus Reliabilitas Spearman-Brown

Dengan r11 adalah reliabilitas yang dicari dan r1/2 adalah korelasi antara belahan pertama dengan belahan kedua. Korelasi tersebut dihitung dengan Korelasi Pearson.

Sebagai ilustrasi, perhatikan tampilan SPSS Versi 23 berikut:

Menu Uji Reliabilitas
Menu Uji Reliabilitas

Klik menu Analyze, lalu pilih pada Scale, arahkan kursor pada Reliability Analysis, setelah klik, maka akan diarahkan ke menu sebagai berikut:

Menu Split-Half
Menu Split-Half

Masukan indikator X11 sampai dengan X16 ke box di sebelah kanan. Lalu pilih sub menu Model di kiri bawah. Paling atas model adalah Cronbach Alpha, yang mungkin lebih populer. Lalu di bawahnya ada pilihan Split half, klik di situ lalu klik OK.

Maka akan keluar Output sebagai berikut:

Output Uji Reliabilitas dengan Split-Half
Output Uji Reliabilitas dengan Split-Half

Baris atas pada output adalah nilai Cronbach's Alpha yaitu sebesar 0,529 untuk part 1 (belahan pertama) dan sebesar 0,283 untuk part 2. Untuk N of items, maka ada nilai  a3 yang berarti bahwa kelompok pertama adalah x11, x12 dan x13, lihat di bawah kiri tabel. Anda akan dengan mudah menentukan bahwa belahan kedua adalah x14, x15 dan x16. Defaultnya memang belahan seperti itu. 

Lalu ada Correlation Between Forms, di mana bisa dipastikan bahwa itu adalah nilai korelasi pearson antara belahan pertama dan kedua. Baris berikutnya adalah nilai r11 atau Spearman-Brown Coefficient yaitu sebesar 0,692. Jadi jika Anda menggunakan batas 0,6 maka model telah dinyatakan reliabel.

Mungkin ada pertanyaan, itu Equal Length dan Unequal apa ya? Itu nilainya kok sama. Nah, kedua nilai itu akan berguna jika jumlah indikator adalah ganjil. Sebagai contoh, kita ambil 5 indikator saja sehingga outputnya akan sebagai berikut:

Output Uji Reliabilitas Jumlah Indikator Ganjil
Output Uji Reliabilitas Jumlah Indikator Ganjil

Tampak bahwa nilai Alpha part 1 adalah sama yaitu sebesar 0,529. Akan tetapi, untuk part 2 menjadi berbeda yaitu (bahkan negatif) -0,085. Part 2 hanya terdiri dari 2 indikator saja yaitu x14 dan x15. Korelasi antara kedua belahan itu adalah sebesar 0,405. Nilai Equal adalah jika dianggap part 2 terdiri dari 3 indikator juga yaitu x13, x14 dan x15. Jadi x13 digunakan dua kali untuk kedua belahan. Sepertinya di sini sudah ada clue yang jelas. OK.

Mungkin masih ada pertanyaan, apakah bisa membelah dengan menggunakan indikator ganjil dan genap. Tentu saja bisa. Untuk hasilnya mungkin bisa berbeda. Terus kita harus menggunakan yang mana? Menurut pendapat para ahli, karena ini hanya metode, maka kita bisa menggunakan hasil yang terbaik. Ini seperti banyaknya metode uji normalitas, kita mau pakai yang mana. Jadi jika metode ganjil genap memberikan hasil yang lebih baik, silahkan dipergunakan. Untuk mencobanya, Anda bisa menggunakan Uji Reliabilitas Split Half dengan Microsoft Excel.
Share:

Tidak ada komentar:

Posting Komentar

Baca dulu sebelum tulis komentar:

Sebelum menuliskan pertanyaan, mohon disimak tanya jawab yang ada terlebih dahulu. Pertanyaan yang sama atau senada biasanya tidak terjawab. Untuk pengguna Blogger mohon profil diaktifkan agar tidak menjadi dead link. Atau simak dulu di Mengapa Pertanyaan Saya Tidak Dijawab?
Simak juga Channel kami di Statistik TV
Komentar akan kami moderasi dulu sebelum ditampilkan. Aktifkan Akun Google Anda.

Terima kasih.

Artikel Terbaru

Translate

Artikel Terbaru

Tutorial Cara Download File dari Google Drive

Dalam artikel sebelumnya telah kita sampaikan bahwa jika menginginkan file yang dipergunakan dalam simulasi di blog ini dapat di download di...

Artikel Populer Seminggu Terakhir

Komentar Terbaru

`

Ingin menghubungi kami untuk kerja sama?

Nama

Email *

Pesan *