Tampilkan postingan dengan label Linearitas. Tampilkan semua postingan
Tampilkan postingan dengan label Linearitas. Tampilkan semua postingan

Uji Linearitas SPSS dengan Ramsey

Uji linearitas dengan metode Ramsey adalah dengan membandingkan antara nilai F hitung modifikasi dengan F hitung pada tabel. Jika F hitung > F tabel maka terdapat kesalahan spesifikasi model demikian sebaliknya jika F hitung < F tabel berarti model telah dispesifikasi dengan benar. Metode ini juga sering disebut dengan RESET (Regressionn Specification Error Test) yang dikembangkan oleh J. B. Ramsey (1969). Adapun nilai F dihitung dengan persamaan sebagai berikut:

Persamaan F hitung Ramsey
Old adalah model awal yang diuji, sedangkan New adalah model baru untuk keperluan pengujian. Sedangkan nilai m adalah jumlah variabel yang ditambahkan untuk pengujian, n adalah jumlah data penelitian dan k adalah banyaknya parameter dalam persamaan New.

Sebagai ilustrasi, kita menggunakan data yang sama dengan data untuk pengujian linearitas dengan metode Durbin-Watson. Sedangkan datanya bisa Anda download di sini. Langkah pertama adalah meregresikan variabel Page_views terhadap Ranking Alexa, tetapi kita harus menyimpang DFit sebagai variabel baru.

Menu Save
Klik Save di bagian kanan untuk mendapatkan nilai DFit.

Menu DFit
Setelah itu klik Continue lalu klik OK sehingga akan keluar output dan juga ada tambahan variabel baru yaitu DFit di layar SPSS.

Output R Square Old

Tampak bahwa nilai R Square old atau awal adalah 0,025 dengan jumlah data 75. Setelah itu regresikan ulang model awal menjadi model baru dengan menambahkan variabel DFit. Adapun output yang didapatkan adalah sebagai berikut:

Output R Square New

Tampak bahwa nilai R Square baru adalah sebesar 0,891 dengan m atau jumlah variabel yang baru masuk adalah 1 yaitu DFit, parameter ada 2. Dengan demikian nilai F hitung adalah sebagai berikut:

Nilai F hitung
Sedangkan nilai F tabel untuk parameter 2 pada taraf signifikansi 0,05 dengan n sebanyak 75 adalah sebesar 3,20. Tampak jelas bahwa F hitung > F tabel yang menunjukkan bahwa model tidak dispesifikasi dengan benar. Hasil ini konsisten dengan pengujian linearitas dengan Durbin-Watson. Interpretasinya adalah bahwa peneliti mengabaikan variabel yang relevan. Ini masuk akal karena hanya memasukkan satu variabel saja pada model ini. 

Share:

Uji Linearitas SPSS dengan Durbin-Watson

Uji Linearitas dipergunakan untuk mengetahui apakah terdapat kesalahan spesifikasi atau tidak. Sumber kesalahan dalam spesifikasi model telah dibahas di artikel sebelumnya. Kali ini kita akan membahas tentang salah satu uji linearitas yang cukup terkenal yaitu dengan Metode Durbin-Watson. Nama Durbin-Watson memang lebih dikenal dalam uji autokorelasi, tetapi sebenarnya juga bisa digunakan dalam uji linearitas. Persamaan yang dipergunakan juga sama dan pengambilan keputusan juga menggunakan tabel yang sama juga.

Dalam contoh ini, kita menggunakan data yang kami simpan di Google Drive, silahkan di download jika diperlukan dengan akun Gmail Anda. Prinsip dari metode ini sederhana, yaitu kita melakukan regresi ulang model yang akan kita uji, tetapi dengan menambahkan variabel bebas yang baru yang merupakan kuadrat dari variabel bebas yang ada. (bisa juga menggunakan pangkat tiga dari variabel bebas yang kita pergunakan.

Langkah pertama adalah pilih Transform lalu klik pada Compute Variables seperti pada gambar di bawah:

Menu Compute Variable
Maka kita akan diarahkan ke Menu untuk menghitung variabel baru. Kita akan mengkuadratkan variabel bebas yaitu Page_view dan memberikan nama variabel tersebut Page_2. Target Variable adalah nama variabel baru dan Numeric Expression adalah perhitungannya yaitu Page_view*Page_view. Di mana tanda * adalah simbol perkalian

Mengkuadratkan Variabel Bebas
Setelah klik OK maka akan muncul variabel baru yaitu Page_2 yang merupakan kuadrat dari variabel Page_view. Kita regresikan variabel Page_view dan Page_2 terhadap Alexa_Rank dan jangan lupa klik Statistic Durbin Watson.

Output Durbin-Watson
Tampak bahwa nilai d adalah sebesar 0,064 dan masuk pada Autokorelasi positif. Justifikasi pada area ini adalah bahwa model mengalami kesalahan spesifikasi. Jika tidak ada variabel kuadrat maka nilai d adalah sebesar 0,065 yang juga berada pada daerah autokorelasi positif.

Penting dicatat bahwa meskipun menggunakan metode Durbin-Watson, tetapi metode uji linearitas ini tidak hanya diterapkan pada data time series saja. Ini berbeda dengan uji Durbin-Watson untuk menguji gangguan autokorelasi yang hanya dipergunakan pada data time series.

Selain metode ini, masih ada juga metode Ramsey (RESET) dan Lagrang Multiplier untuk uji spesifikasi model.

Share:

Uji Linearitas pada Analisis Regresi Linear

Uji Linearitas adalah salah satu uji asumsi klasik yang bertujuan untuk melihat apakah spesifikasi model yang dipergunakan sudah benar atau belum. Salah satu asumsi dalam Classical Linear Regression Model (CLRM) adalah bahwa model regresi yang dipergunakan harus dispesifikasi dengan benar. Jika tidak maka akan terjadi masalah error pada spesifikasi model atau bias. Maka akan muncul beberapa pertanyaan, misalnya bagaimana caranya menyusun model yang benar, atau kesalahan spesifikasi model (miss specifiaction model) disebabkan oleh apa saja?

Sebenarnya istilah linearitas tidak muncul dalam kajian ini. Istilahnya adalah specification error test, tapi entah kenapa menjadi uji linearitas. Kalau uji asumsi klasik yang lain memang diterjemahkan lebih jelas, misalnya multicollinearity jadi multikolinearitas, heteroscedasticity menjadi heteroskedastisitas dan autocorrelation menjadi autokorelasi. Tapi sudahlah, yang penting dapat dihapami bahwa spesifikasi error ini berkaitan dengan uji linearitas.

Secara umum, analisis empiris setidaknya memenuhi 6 hal, yaitu (1) logis, (2) sesuai dengan teori, (3) variabel penjelas tidak boleh berkorelasi dengan errornya, (4) memberikan parameter yang konstan, (5) koheren, dan (6) mempunyai cakupan yang luas (Hendry dan Richard, 1983). Dalam konteks ini, maka error spesifikasi atau kesalahan dalam menspesifikasi model dapat muncul dari beberapa hal yaitu (1) menggunakan variabel yang tidak relevan; (2) memasukkan variabel yang tidak diperlukan; (3) Mengadopsi persamaan yang salah; (4) Kesalahan pengukuran; (5) Kesalahan data stokastik; dan (6) Adanya asumsi normalitas.

Jika peneliti melakukan kesalahan dalam melakukan spesifikasi model, maka bisa akan terjadi goodness of fit yang terlalu rendah, jika kita mengabaikan variabel yang relevan atau sebaliknya terlalu tinggi karena kita menggunakan variabel yang tidak relevan. Sebagai ilustrasi yang sederhana, dalam suatu model regresi, Anda coba masukkan saja variabel 'sembarang' ke dalam model regresi tersebut. Setelah itu lihat nilai R nya, pasti akan meningkat tidak peduli variabel yang dimasukkan tadi relevan atau tidak. (Untuk itulah maka banyak yang menggunakan Adjusted R karena nilainya bisa turun atau bisa naik tergantung dari variabel yang dimasukkan relevan atau tidak).

Untuk melakukan apakah terjadi error spesifikasi atau tidak kita bisa melakukan dengan beberapa cara.

1. Uji Durbin-Watson

Uji Durbin-Watson sangat dikenal dalam uji autokorelasi. Uji ini juga dapat dipergunakan untuk melihat apakah model mengabaikan variabel yang relevan atau menggunakan fungsi yang tidak benar sehingga terjadi miss specification error. Langkahnya juga sederhana yaitu membandingkan nilai Durbin-Watson model awal dengan nilai Durbin-Watson di mana variabel bebas diberikan fungsi kuadrat (atau bahkan pangkat tiga). Jika hasil Durbin-Watson pada model modifikasi mengalami gangguan autokorelasi positif, berarti model mengalami kesalahan spesifikasi, yaitu mengabaikan variabel yang relevan dalam model.

Residual (a) Linear, (b) Kudratik, (c) Kubik

Gambar di atas adalah nilai residual untuk 3 model, yaitu (a) linear, (b) kuadratik atau variabel bebas pangkat dua; dan (c) kubik atau variabel bebas pangkat tiga. Nilai residual cenderung mendekati sumbu X atau titik nol atau semakin tidak bervariasi.

2. Uji Ramsey

Uji linearitas dengan metode Ramsey juga sering disebut dengan Regression Specification Error Test atau disingkat RESET. Ide dasarnya adalah memasukkan variabel Y estimated yang dihasilkan dari regresi awal menjadi salah satu variabel bebas dalam model uji. Jadi variabel bebasnya bertambah 1, lalu dapatkan nilai R Squarenya. Setelah itu hitung F dengan menggunakan R square awal dan R Square model baru dengan adanya tambahan 1 variabel tersebut. Bandingkan F hitung dengan F tabel di mana jika F Hitung > F Tabel maka terjadi kesalahan spesifikasi.


3. Uji Lagrange Multiplier (LM)

Metode ini juga bisa digunakan sebagai alternatif uji linearitas. Pertama adalah dapatkan nilai residual dari model awal. Setelah itu nilai residual ini dipergunakan sebagai variabel terikat dengan variabel bebasnya adalah variabel bebas model awal dengan dikuadratkan (atau pangkat 3). Setelah itu hitung nilai Chi Squarenya lalu bandingkan dengan nilai Chi Square tabel dengan df 2. Jika Chi Square hitung > Chi Square Tabel maka terjadi kesalahan spesifikasi.

Artikel berikut akan memberikan contoh dari masing-masing metode di atas untuk lebih memperjelas.

Share:

Ingin menghubungi kami untuk kerja sama?

Nama

Email *

Pesan *

Translate

Artikel Populer Seminggu Terakhir

Komentar Terbaru

`