Ordinal regression (regresi ordinal) adalah analisis regresi di mana variabel terikatnya menggunakan skala ordinal. Apakah itu skala ordinal? Silahkan simak di postingan Skala Pengukuran Statistik. Sedangkan variabel bebasnya bisa merupakan Covariate (jika menggunakan skala interval atau rasio) atau bisa merupakan Factor (jika menggunakan skala nominal atau ordinal).  |
Ranking Juara adalah Contoh Skala Ordinal |
Penting untuk dimengerti bahwa jika kita mempunyai variabel terikat dalam data ordinal, maka penggunaan regresi linear berganda memberikan hasil yang tidak baik, atau bahasa resmi pada buku panduan SPSS mengatakan “don’t work very well”. Alternatif metode yang digunakan sering juga disebut dengan Generalized linear models yang memprediksikan cummulative probabilities dari kategori yang ada. Misalnya begini, ada kategori perokok, katakanlah perokok ‘berat’, ‘sedang’, ‘ringan’ dan ‘tidak merokok’ (untuk sementara variabel bebasnya tidak dibahas dulu). Jadi kemungkinan kategori sopir, misalnya
Sebagai perokok berat, kemungkinannya 0,4
Sebagai perokok sedang, kemungkinannya 0,3
Sebagai perokok ringan, kemungkinannya 0,2
Sebagai tidak merokok, kemungkinannya 0,1
Maka cummulative probability dapat dihitung sebagai berikut:
Perokok berat, cummulative probabilitinya 0,4
Perokok berat atau sedang, cummulative probabilitinya 0,4 + 0,3 = 0,7
Perokok berat atau sedang atau ringan, cummulative probabilitinya 0,4 + 0,3 + 0,2 = 0,9
Perokok berat atau sedang atau ringan, cummulative probabilitinya 0,4 + 0,3 + 0,2 + 0,1 = 1
Bisa dipahami? Jadi dalam hal ini perhitungan yang terakhir akan memberikan nilai 1 (atau 100%).
Dari simulasi tersebut mudah-mudahan bisa dipahami. Sehingga dengan kata-kata sederhana, regresi ordinal dapat memberikan jawaban, seberapa besar kemungkinan seorang sopir itu menjadi seorang perokok berat? Jawabannya yaitu sebesar 0,4. Lebih lanjut, seberapa besar kemungkinan seorang sopir menjadi seorang perokok berat atau perokok sedang? Jawabannya 0,7. Seberapa besar kemungkinan seorang sopir menjadi perokok berat atau perokok sedang atau perokok ringan (dengan kata lain merokok), jawabannya 0,9. Nah yang terakhir kan tidak perlu dipertanyakan. Karena pertanyaannya akan menjadi seberapa besar kemungkinan seorang sopir merokok atau tidak merokok? Jawabannya ya pastilah 1.
Sudah mendapatkan pecerahan??? Dalam implikasinya, regresi ordinal hanya akan memberikan persamaan untuk memprediksi seberapa besar kemungkinan sopir merokok berat, merokok berat atau sedang, dan merokok berat atau sedang atau ringan. Itu saja. Tidak ada persamaan yang memprediksikan seberapa besar kemungkinan sopir itu menjadi seorang perokok berat, atau sedang atau ringan atau tidak merokok. Karena yang jelas lah jawabannya mesti 1.
Contohnya begini, misalnya ada judul penelitian seperti ini: Pengaruh Quick ratio (QR), Return on Assets (ROA) dan Debt to Equity Ratio (ER) terhadap opini audit.
Dalam hal ini variabel bebasnya merupakan covariate, dan opini audit dilambangkan dengan 5 (wajar tanpa pengecualian), 4 (wajar dengan pengecualian), 3 (wajar dengan catatan), 2 (tidak wajar) dan 1 (tidak memberikan pendapat). Setelah dilakukan perhitungan regresi ordinal, maka akan memberikan 3 persamaan yaitu persamaan yang mencerminkan pengaruh QR, ROA dan DER terhadap kemungkinan perusahaan mendapatkan opini auditor 5, persamaan kedua adalah persamaan yang mencerminkan pengaruh QR, ROA dan DER terhadap kemungkinan perusahaan mendapatkan opini auditor 5 atau 4 dan persamaan ketiga adalah terhadap kemungkinan perusahaan mendapatkan opini audit 5 atau 4 atau 3. Nah jika anda ingin melihat seberapa besar kemungkinan perusahaan mendapatkan opini 4 saja, ya anda tinggal mengurangkan seberapa besar kemungkinan perusahaan mendapatkan opini 5 dan 4 dengan seberapa besar kemungkinan perusahaan mendapatkan opini 4.
O ya, terdapat lima pilihan regresi ordinal atau sering disebut option link. Kelima pilihan tersebut adalah Logit, Complementari log-log, Negative log-log, Probit dan Cauchit. Pilihannya tergantung dari distribusi data yang dianalisis. Panduannya kurang lebih sebagai berikut:
Logit dengan persamaan: f(x) = log(x/(1-x))
Digunakan pada kebanyakan distribusi data, jadi Program SPSS secara default menggunakan option link berupa Logit
Complementary Log-log dengan persamaan f(x) = log(-log(1-x))
Digunakan untuk data yang mempunyai kecenderungan bernilai tinggi.
Negative Log-log dengan persamaan f(x) = -log(-log(x))
Digunakan untuk data yang mempunyai kecenderungan bernilai rendah
Probit dengan persamaan f(x) = O-1 (x) dengan O-1 adalah fungsi inverse distribusi kumulatif standar normal
Digunakan jika variabel latent terdistribusi secara normal
Cauchit (Inverse Cauchy) dengan persamaan f(x) = tan(Phi(x-0,5))
Digunakan jika variabel latent mempunyai nilai yang ekstrem
Kelima option di atas harus ditentukan dengan menelaah distribusi data. Bagi yang berminat dengan regresi ordinal, tolong ini ditelaah dulu sebelum masuk kepada cara menggunakan regresi ordinal dengan Program SPSS. Kalau masih ada yang kurang jelas silahkan berkomentar dan subscribe aja, jadi jawabannya akan otomatis masuk ke email anda.