Mau Data Anda diolah secara gratis? Klik pada gambar 2 x !! No Tipu

Simulasi SmartPLS (Structural Equation Modeling berbasis Variance)


Pengujian hipotesis dalam penelitian ini menggunakan metode Partial Least Square (PLS). PLS merupakan metode alternatif analisis dengan Structural Equation Modelling (SEM) yang berbasis variance. Keunggulan metode ini adalah tidak memerlukan asumsi dan dapat diestimasi dengan jumlah sampel yang relatif kecil. Alat bantu yang digunakan berupa program SmartPLS Versi 2 yang dirancang khusus untuk mengestimasi persamaan struktural dengan basis variance. Program SmartPLS Versi 2 dapat diperoleh secara gratis di www.smartpls.de. Model struktural dalam penelitian ini ditampilkan pada Gambar 1 di bawah.
Gambar 1
MODEL STRUKTURAL
Gambar tersebut menunjukkan bahwa konstruk Kepemimpinan (KM) diukur dengan 5 buah indikator yaitu KM1, KM2, KM3, KM4 dan KM5. Demikian juga konstruk Budaya Organisasi (BO) diukur dengan 3 indikator yaitu BO1, BO2 dan BO3, konstruk Motivasi (MT) diukur dengan 3 indikator yaitu MT1, MT2 dan MT3 dan kontruk Kinerja Pegawai (KP) diukur dengan 6 indikator yaitu KP1, KP2, KP3,KP4, KP5 dan KP6. Arah panah antara indikator dengan kontruk laten adalah menuju indikator yang menunjukkan bahwa penelitian menggunakan indikator reflektif yang relatif sesuai untuk mengukur persepsi. Hubungan yang akan diteliti (hipotesis) dilambangkan dengan anak panah antara konstruk

Simulasi Uji Validitas dan Uji Reliabilitas dengan SPSS


Berikut adalah simulasi uji validitas SPSS dengan korelasi Pearson dan uji reliabilitas dengan Split-Half dengan SPSS Versi 11.5. Di bagian akhir, kami berikan link video Youtube untuk lebih memperdalam tutorial ini.
1.      Uji Validitas
Uji validitas yang digunakan adalah dengan metode korelasi Pearson, dengan menu Analyze lalu pilih Correlate dan klik pada Bivariate seperti pada gambar di bawah ini:
Gambar 1
Menu Korelasi Pearson
 Setelah diklik pada menu Bivariate maka program SPSS akan mengarahkan ke box sebagai berikut:
Gambar 2
Menu Box Bivariate Correlations


 Di sebelah kiri merupakan indikator-indikator dari variabel penelitian, dan untuk menguji validitas pada indikator perilaku siswa, maka indikator ps01 sampai dengan ps14 dan Perilaku Siswa dipindah ke box sebelah kanan yang kosong sebagai berikut:
Gambar 3
Memasukkan Indikator

Setelah itu tekan OK di sebelah kanan atas pada box, sehingga program akan menghitung nilai R Pearson pada masing-masing indikator dengan nilai Skor total yaitu pada variabel Perilaku Siswa. Nilai yang dipergunakan untuk menguji validitas indikator adalah pada kolom paling kanan, sehingga akan ditampilkan sebagai berikut:
Tabel 1
Uji Validitas Indikator Perilaku Siswa


Perilaku Siswa
PS01
Pearson Correlation
.642(**)

Sig. (2-tailed)
.000

N
72
PS02
Pearson Correlation
.655(**)

Sig. (2-tailed)
.000

N
72
PS03
Pearson Correlation
.581(**)

Sig. (2-tailed)
.000

N
72
PS04
Pearson Correlation
.633(**)

Sig. (2-tailed)
.000

N
72
PS05
Pearson Correlation
.634(**)

Sig. (2-tailed)
.000

N
72
PS06
Pearson Correlation
.772(**)

Sig. (2-tailed)
.000

N
72
PS07
Pearson Correlation
.698(**)

Sig. (2-tailed)
.000

N
72
PS08
Pearson Correlation
.755(**)

Sig. (2-tailed)
.000

N
72
PS09
Pearson Correlation
.717(**)

Sig. (2-tailed)
.000

N
72
PS10
Pearson Correlation
.802(**)

Sig. (2-tailed)
.000

N
72
PS11
Pearson Correlation
.784(**)

Sig. (2-tailed)
.000

N
72
PS12
Pearson Correlation
.741(**)

Sig. (2-tailed)
.000

N
72
PS13
Pearson Correlation
.689(**)

Sig. (2-tailed)
.000

N
72
PS14
Pearson Correlation
.695(**)

Sig. (2-tailed)
.000

N
72
Perilaku Siswa
Pearson Correlation
1

Sig. (2-tailed)
.

N
72
                    **  Correlation is significant at the 0.01 level (2-tailed).

Interpretasi dapat dilakukan dengan 3 cara yaitu sebagai berikut:
1.   Menggunakan tanda flag (*) di mana tanda satu buah flag (*) menunjukkan bahwa indikator tersebut signifikan pada taraf 5% dan tanda dua buah flag (**) menunjukkan bahwa indikator tersebut valid pada taraf 1%.
2.    Menggunakan signifikansi pada baris kedua masing-masing indikator di mana indikator dinyatakan valid pada taraf 5% jika mempunyai signifikansi di bawah 0,05 dan valid pada taraf 1% jika mempunyai signifikansi di bawah 0,01.
3.   Menggunakan R tabel, yaitu membandingkan nilai Pearson Correlation (baris pertama masing-masing indikator) dengan nilai R yang terdapat pada Tabel, di mana nilai R untuk sampel sebanyak 72 pada taraf 5% adalah sebesar 0,230.
Dengan demikian tampak bahwa semua indikator yang dipergunakan untuk mengukur variabel perilaku siswa adalah valid karena semua indikator terdapat tanda flag dua buah, dan signifikansi di bawah 0,05 semua. Selain itu, nilai Pearson Correlation semuanya juga di atas nilai R tabel yaitu sebesar 0,230.

2.      Uji Reliabilitas
Uji reliabilitas menggunakan metode split half yaitu dengan memilih Analyze >> Scale >> Reliabilty yaitu sebagai berikut:
Gambar 5
Menu Uji Reliabilitas

Setelah diklik pada menu Reliability Analysis, maka program akan mengarahkan ke menu box sebagai berikut:
Gambar 6
Menu Box Uji Reliabilitas

Pindahkan indikator ps01 sampai dengan ps14 dari kotak kiri ke kotak kosong di sebelah kanan dan pada Model di kiri bawah pilih menu Split half, yaitu sebagai berikut:
Gambar 7
Memasukkan Indikator

Setelah itu tekan OK, sehingga program akan menghitung dan mengeluarkan output sebagai berikut:

Gambar 8
Output Uji Reliabilitas Perilaku Siswa

Tampak bahwa terdapat N of cases yaitu jumlah sampel sebanyak 72 dengan indikator N of Items sebanyak 14. Korelasi antara part 1 dengan part 2 adalah sebesar 0,7032 dan Guttman Split Half adalah sebesar 0,8160 yang berada di atas nilai R tabel untuk 72 sampel yaitu sebesar 0,230. Dengan demikian dinyatakan bahwa rangkaian kuesioner yang dipergunakan pada variabel perilaku siswa adalah reliabel.
Berikut simulasi Uji Validitas SPSS dan Uji Reliabilitas dengan SPSS Versi 25:


Promo Domain Murah mulai Rp. 15rb